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ABSTRACT 

This paper presents a conceptual framework for the analysis 

of expressive qualities of movement. Our perspective is to 

model an observer of a dance performance. The conceptual 

framework is made of four layers, ranging from the 

physical signals that sensors capture to the qualities that 

movement communicate (e.g., in terms of emotions). The 

framework aims to provide a conceptual background the 

development of computational systems can build upon, with 

a particular reference to systems analyzing a vocabulary of 

expressive movement qualities, and translating them to 

other sensory channels, such as the auditory modality. Such 

systems enable their users to “listen to a choreography” or 

to “feel a ballet”, in a new kind of cross-modal mediated 

experience. 

Author Keywords 

Cross-modal and multimodal interactive systems; Dance 

performance; Expressive movement; Automated analysis of 

movement qualities; Interactive sonification.  

ACM Classification Keywords 

H.5.m. Information interfaces and presentation (e.g., HCI): 

Miscellaneous. 

INTRODUCTION 
In his uncanny cosmic mysticism, ancient Persian poet 

Rûmi claimed that the action of closing eyes is needed for 

really seeing, because it makes us search for that light that 

is more evident and clear than the manifest and visible one.  

This idea is at the basis of the conceptual framework we 

propose in this paper, i.e., a framework to guide the design 

and the development of systems for automated analysis of 

expressive movement qualities. The rationale is that if we 

can capture the inner and intimate qualities (e.g., in terms of 

emotions) movement conveys to an external observer, these 

qualities can be made manifest and visible through other 

sensory modalities such as, for example, the auditory one. 

In such a way, by closing her eyes and by listening to the 

auditory representation of movement qualities, a user can 

be made aware of some information, which is hidden in the 

movement and may be difficult to perceive otherwise. 

The proposed framework consists of four layers, ranging 

from physical signals to high-level qualities of movement 

(and dance) performance and addresses several aspects such 

as different spatial and temporal scales. It was developed 

within the EU-H2020 ICT Project DANCE1, which aims at 

investigating how sound and music can express, represent, 

and analyze the affective and relational qualities of body 

movement. To transfer vision into sound, however, a model 
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is needed to understand what we see when we observe the 

qualities of a movement, and what we perceive in a 

movement when we feel its qualitative expression. The 

model presented here, while focusing on the visual analysis 

of movement qualities, is propaedeutic to their multi- and 

cross-sensorial translation. 

The paper is organized as follows. The next section reviews 

some related work; our framework is then described layer-

by-layer; finally, on-going and future work, with particular 

focus on existing or planned implementations is discussed. 

RELATED WORK 

Developing computational models of full-body expressive 

movement in nonverbal communication is a challenging 

interdisciplinary research problem. It involves dance and 

choreography (e.g., Rudolph Laban’s Effort Theory [16]), 

experimental psychology (e.g., [29]), affective computing 

(see some recent surveys on analysis of nonverbal affective 

content in full-body movement [17][18]), neuroscience (see 

e.g., the study by de Gelder on the role of the body in 

conveying emotion [10]). Camurri and colleagues [4][5][7] 

proposed a multi-layered model of expressive gesture, 

which was adopted in the EyesWeb libraries for expressive 

gesture analysis (e.g., [9][14]). Recent studies focused on 

computational models inspired by artistic research, see for 

example the work by Alaoui and collegues to analyze the 

vocabulary of choreographer Emio Greco [1]. Moreover, 

analysis of expressive full-body movement qualities proved 

useful in research on ICT for therapy and rehabilitation of 

cognitive and motoric disabilities including, e.g., Parkinson 

disease [8], autism [22], and chronic pain [26]. 

With respect to our previous work in [4][5][7], the proposed 

framework (i) is more explicitly connected to an observer’s 

perspective, (ii) takes into account different spatial and 

temporal scales, (iii) establishes a clear distinction on the 

types of data in each layer and introduces specific analysis 

primitives, and (iv) explicitly targets expressive qualities.  

CONCEPTUAL FRAMEWORK 

The framework we propose here develops from the multi-

layered framework for analysis of nonverbal expressive 

content in full-body movement defined in [4][5][7]. Our 

proposal grounds on the following basic assumptions: 

1. Observer Perspective: we assume the perspective of an 

observer of a dance performance, rather than the 

(egocentric) perspective of the dancer. For example, an 

observer may perceive the movement of a dancer as 

light, but the movement can actually be the result of 

strong muscular forces and tensions the dancer exerts in 

order to convey lightness to an audience. 

2. Body-Space Scales: we assume that a specific subset of 

expressive movement features can be measured at 

different Body-Space Scales, ranging from a single part 

of the body (e.g., a hand), to the whole body, up to a 

group of dancers perceived as a single body/organism. 

For example, contraction/expansion can be measured on 

the movement of one hand, of the whole body, or of a 

group of dancers; coordination can be measured both in 

terms of intra-personal synchronization (either of joints 

of a limb or of the whole body), and of inter-personal 

synchronization of dancers within a group. Body-Space 

Scales are related to the distinction between Personal 

Space and General Space proposed in R. Laban’s Effort 

Theory [16], and adopted in the design of the expressive 

libraries of the EyesWeb system [5]. 

3. Temporal Scales (from continuous to discrete time): we 

assume that different time scales apply to different kinds 

of analyses and extracted features. Low-level features 

are usually measured as instantaneous qualities; mid-

level features typically require time windows in a range 

of 0.5-3s [11][24]; high-level features, concerning e.g., 

emotion and social signals, are measured at larger time 

scales. As long as the analysis moves from low-level 

signals to high-level concepts, the focus of the analysis 

moves from continuous time-series of sampled data to 

events happening at discrete locations in time.  

4. Multimodality: our model is conceived to fully exploit 

multimodal integration of motion capture, visual, audio, 

and physiological data. Respiration features contribute, 

for example, to analysis of expressive movement. 

5. Analysis Primitives: we assume that analysis primitives 

are applied to data at various stages in the model. 

Analysis primitives are unary, binary, or n-ary operators 

that summarize with one or more values the temporal 

development of a feature in an analysis time unit (e.g., a 

movement unit or a time window). Statistical moments 

(for example, average, standard deviation, skewness, 

and kurtosis) are among the simplest unary analysis 

primitives. Further examples of unary operators, that are 

 

Figure 1. Conceptual framework. 



more complex, include shape (e.g., slope, peaks, valleys 

[9]), entropy [13], recurrence [27], and time-frequency 

transforms. Analysis primitives also include predictive 

models (e.g., HMMs as in [2]), or physical models, such 

as the mass-damper-spring model adopted in [23]. 

Figure 1 sketches the overall structure of our multi-layered 

conceptual framework. In the next subsections, we describe 

each layer in more detail. 

Layer 1 – Physical signals: Virtual sensors 

Layer 1 (Physical signals) grounds on the concept of virtual 

sensor, understood as a single physical sensor (or as the 

integration or fusion of data from many physical sensors) 

combined with signal conditioning (e.g., denoising and 

filtering), and with techniques for extraction of specific raw 

data. For example, an RGB-D physical sensor (e.g., Kinect) 

may be associated with virtual sensors providing the 3D 

trajectories of specific body parts, the silhouette of the 

tracked bodies, and the captured depth image. At layer 1 

data is captured by an array of virtual sensors, associated to 

a broad range of physical sensors, including motion capture, 

video cameras, microphones, and physiological sensors. We 

characterize each virtual sensor with its sampling rate and 

with the data it provides (e.g., an image, a 3D position, an 

acceleration, a numeric sample, an audio or a physiological 

signal). Data is processed to get representations suitable for 

the next analysis layer. Table 1 presents a list of possible 

outputs of layer 1. 

Table 1. Physical signals (virtual sensors). 

Layer 2 – Low-level features: Time-series 

Layer 2 (Low-level features) receives the raw data from the 

array of virtual sensors at layer 1 and extracts a collection 

of features characterizing movement locally in time. That 

is, low-level features are usually computed instantaneously 

on the raw data or on small buffers of a few samples by 

using a sliding-window approach with maximum overlap. 

Thus low-level features are represented as time-series 

having usually the same sampling rate as the raw data they 

are computed from. Time-series may be either univariate 

(e.g., kinetic energy) or multivariate (e.g., the x, y, and z 

components of velocity). Table 2 shows a (non-exhaustive) 

list of low-level features at layer 2. 

Table 2. Low-level features. 

For example, Gravity, i.e., acceleration toward the ground, 

is a layer 2 feature, consisting of a time-series of data 

obtained with an accelerometer or with motion capture, and 

which is the basis for measuring the Lightness mid-level 

feature at layer 3. 

 

Layer 1 - Physical signals 

Data from virtual sensors and signal conditioning 

Trajectories  Positional data (e.g., 2D or  

3D positions of joints, and of the 

barycenter) obtained from 

MoCap, video cameras, and  

RGB-D sensors (e.g., Kinect). 

Bounding Space 

Convex Hull 

The minimum polygon (2D)  

or volume (3D) surrounding  

an input cloud of points (MoCap) 

or a body silhouette. 

Accelerations Measures from accelerometers 

and gyros. 

Physiological  

sensors data 

EMG, EEG, ECG, and so on. 

Respiration Signal from specific respiration 

sensors or from a microphone. 

Nonverbal vocal 

utterances 

E.g., kiai in Karate, vocal 

utterances in dance. 

Floor feet pressure  Measure of physical weight on 

each foot from a sensitive floor. 

Layer 2 - Low-level features  

Time series of instantaneous descriptors of movement 

Kinematics Velocity, acceleration, and jerk. 

Gravity Acceleration toward the ground. 

Kinetic Energy The kinetic energy of a cloud of 3D 

moving joints, possibly weighted by 

their masses, using weights from 

biometric tables. 

Motion Index 

or Quantity Of 

Motion (QoM) 

Area of the difference of the areas of 

silhouettes computed on consecutive 

frames [7]. 

Postural 

Contraction 

 

A measure of the extent at which 

body posture is close to its 

barycentre. 

Postural Symmetry  Geometric symmetry of a posture 

with respect to a plane or an axis. 

Smoothness A joint moving according to the 

specific laws from biomechanics 

defining smoothness [15]. 

Postural and 

Dynamic Balance 

Computed from (i) the measure of 

the projection to the floor of the 

barycentre of the body in the area 

defined by the feet and (ii) the ratio 

between acceleration of the 

barycentre of the head and of the 

barycentre of the body.  

Change of Weight 

between Feet 

Computed from pressure patterns 

measured by a sensitive floor. 

Postural Tension A vector describing the angles 

between the adjacent lines 

identifying feet (the line connecting 

the barycentre of each foot), hip, 

trunk, shoulders, and head 

directions. This is inspired by 

classical paintings and sculptures 

where such angles are exploited to 

express postural tension. 



Layer 3 – Mid-level features: Trajectories or points in 
multidimensional (amodal) spaces  

Whilst analysis at layer 2 is local in time, layer 3 (Mid-level 

features) deals with structural aspects, i.e., it computes 

features describing one single movement unit. If movement 

units cannot be identified (e.g., in a continuous stream of 

tightly interlaced movements), layer 3 operates on time 

windows, long enough to grab movement time evolution. 

Furthermore, features at layer 3 are at a level of abstraction 

such that they represent amodal descriptors, i.e., the level 

where perceptual channels integrate. This means that, for 

example, Fluidity is a meaningful feature to characterize 

both audio and movement. Amodal descriptors enable the 

design of mapping strategies from movement to the sonic 

domain: we can analyze a movement starting from physical 

signals (layer 1) up to layer 3, and then we can map features 

at layer 3 back down to the physical signal in the sonic 

domain. This is a fundamental step in our DANCE Project, 

enabling multisensorial translation of movement qualities to 

another sensorial domain, namely the sonic one.  

Analysis and processing at layer 3 goes through two basic 

steps: segmentation and computation of amodal features.  

Segmentation. The segmentation step identifies the analysis 

unit. This can either be a single movement unit (a gesture) 

in a stream of movements or a time window of a defined 

duration. In the former case segmentation may operate at 

different levels, that is, a movement unit may be, e.g., a 

single movement or a whole phrase. Depending on how 

segmentation is performed, layer 3 produces different 

outputs. If single movement units are isolated, these are 

conceived as events. This means that it is not possible to 

determine a sampling rate anymore. Rather each single 

event is associated with a given time (typically the time 

instant when the movement unit ends). An array of values 

of features is associated with each of such events, that is, 

the output of layer 3 is a position in a multidimensional 

feature space i.e., a location in a multidimensional map. If, 

instead, analysis is still performed on time windows, such 

windows are either not overlapped or partially overlapped. 

A sampling rate can still be determined, based on windows 

duration and overlap, and an array of values of features is 

computed for each time window. In this case, the output of 

layer 3 is a trajectory in a multidimensional feature space, 

i.e., a path in a multidimensional map. Features computed 

at layer 2 are usually employed to perform segmentation. 

One of the simplest techniques consists in analyzing kinetic 

energy by applying a possibly adaptive threshold. More 

sophisticated techniques exploit, e.g., machine learning 

approaches where a vector of values obtained by applying 

analysis primitives to layer 2 time-series is used to train and 

feed recognizers to distinguish pauses and movements. In 

case real-time analysis is not needed and an archive of 

performances is available, manual annotation can be carried 

out when automatic segmentation is not accurate enough. Table 3. Mid-level features. 

Layer 3 - Mid-Level Features 

Trajectories or points in multidimensional spaces 

Contraction Movement contracting along time. 

Dynamic 

Symmetry 

Symmetry of movement features, also 

in terms of analysis primitives, e.g., 

symmetry of entropy between left and 

right hand [14].  

Directness  
(Laban’s Space) 

Movement to directly reach a target 

position (Direct vs. Flexible) [28]. 

Lightness  
(Laban’s Weight) 

How gravity influences a movement, 

e.g., based on relations between 

vertical and horizontal components of 

acceleration. 

Suddenness 
(Laban’s Time) 

Rapid change of velocity (Sudden vs. 

Sustained) in a movement. 

Impulsivity Movement which is sudden and not 

prepared by antagonists muscles [19]. 

Equilibrium The extent at which a movement is 

balanced, i.e., the tendency to fall or 

to keep a stable balance. 

Fluidity A fluid movement [23] is smooth and 

coordinated (e.g., a wave-like 

propagation through body joints). 

Repetitiveness The extent at which a movement 

exhibits repetitive patterns. 

Tension The extent at which a movement 

exhibits rotation of multiple planes, 

including spirals (computed from 

Postural Tension). 

Cohesion 

 

Whether a movement is made of 

components exhibiting similar 

features (e.g., tendency of limbs to 

move as a single entity in a direction). 

Coordination Whether a movement is made of 

synchronized components (e.g., 

synchronization of limbs to operate a 

body at the unison). This corresponds 

to temporal entrainment in a group. 

Origin Whether a movement originates at a 

joint, and at what extent a joint leads 

the body in the movement. This may 

correspond to leadership when 

measured in a group. 

Attraction The degree of influence an external 

point in space has on movement  

(e.g., like a magnet attracting or 

repulsing the dancer). 

Slowness Whether a movement is continuous 

and at an extremely slow speed. 

Stillness Pause: minimal movements depending 

on physiology (e.g., respiration), 

emotions, and attention continuously 

occur.  



Computation of features. Two major approaches are applied 

for computing mid-level amodal features:  

1. Direct computation of mid-level features specifically 

defined and grounded on low-level features and/or 

physical signals (e.g., Smoothness is involved in the 

computation of Fluidity). Table 3 introduces a list of 

mid-level features at layer 3. 

2. Application of analysis primitives to one or many low-

level features. Unary operators can be applied, e.g., to 

retrieve salient events [20] (for instance, peaks and 

valleys in the time-series of kinetic energy), and to 

estimate the complexity of a movement by computing, 

for example, sample entropy [25] on one or more time-

series of low-level features (see e.g., [13]). Binary and 

n-ary operators can be applied e.g., for measuring the 

relationships between time-series of low-level features 

computed on the movement of different body parts 

(limbs). For example, synchronization techniques are 

applied to evaluate coordination between hands (the so 

called intra-personal synchronization) or coordination of 

dancers in a group (i.e., inter-personal synchronization). 

Causality provides information on whether, for example, 

the movement of a joint leads or follows the movement 

of another joint in the body, or it can even explain the 

leadership of a dancer or of the movement of a musician 

in a group [13][14]. Predictive models are applied, e.g., 

to estimate the extent at which actual movement 

corresponds to or violates expectations (i.e., something 

related to tension, see e.g., [6]). 

Layer 4 – Expressive qualities 

Whilst the previous layers focus mainly on features at a 

growing level of abstraction from layer 1 to layer 3, this 

layer mainly focuses on the nonverbal communication of 

movement qualities to an external observer. Memory and 

Context are factors that intervene mainly at this layer, 

characterized by observation within layered and longer time 

intervals. Both Memory (the history of previous movement 

qualities) and Context may influence how an external 

observer perceives and interprets a feature in terms e.g., of 

expectancy [6], saliency (unexpected, rare, or contrasting 

movements may contribute to raise sensitivity to specific 

movement features), and sensitivity (stillness may raise 

sensitivity to very tiny movements). These factors may be 

modeled as possible biases in the measure of a feature to 

get a refined measure that better reflects the perceived 

quality of a movement.  

At layer 4, machine-learning techniques are often employed 

to map a point or a trajectory in a multidimensional space, 

obtained at layer 3, onto the movement quality an external 

observer perceives. Both supervised and unsupervised 

approaches were adopted in the literature. Considering, e.g., 

communication of emotion, existing studies applied for 

example clustering [14], support vector machines [22], and 

several ways of integrating and fusing different classifiers 

(e.g., see examples in [18]). Whereas, on the one hand 

machine learning cannot be simply taken as the solution to 

whatever problem and should be accurately tailored to the 

problem under investigation, on the other hand the above-

mentioned examples and a growing body of literature 

[17][18] show that machine learning is a viable and suitable 

approach to the analysis on nonverbal movement qualities. 

Table 4: Communication of expressive qualities 

COMPUTATIONAL MODELS AND SYSTEMS 

Our conceptual framework aims at providing a solid ground 

to build computational models and systems upon. In the 

DANCE Project we started implementing the framework in 

the EyesWeb XMI software platform (www.infomus.org).  

With respect to physical signals (layer 1), we implemented 

a scalable platform, supporting input devices ranging from 

motion capture, respiration, and other physiological sensors 

(typically used for research purposes and lab experiments), 

to RGB-D sensors and wearable devices (for applications in 

the wild). A typical configuration for a real-time application 

is based on 5 wireless accelerometers on wrists, ankles, and 

coccyx (body barycenter). 

Layer 4 - Communication of expressive qualities  

Predictability/expectancy The extent at which an 

external observer can predict 

a dancer’s movement [6].  

Hesitation  When an external observer 

cannot clearly perceive a 

movement intention. 

Attraction / Repulsion The extent at which an 

external observer is 

attracted/repulsed.  

Groove The extent at which dancer’s 

movement elicits movement 

in an external observer. 

Saliency A movement which is 

perceived as salient with 

respect to others occurring at 

the same time. 

Emotion The emotion, expressed by 

full-body movement and 

posture, which is conveyed 

to an external observer. 

Emotions can be represented 

either in a categorical way or 

by means of dimensional 

models (e.g., PAD). See, for 

example [14][22]. 

Nonverbal social signals Entrainment in its temporal 

and affective components 

[21][27], leadership [27],  

and so on. 



With respect to low-level features (layer 2), most of them 

(see Table 2) were already available in EyesWeb and are 

included in the DANCE implementation of the framework. 

Concerning mid-level features (layer 3) and expressive 

qualities (layer 4), some existing EyesWeb libraries were 

reconceived and novel analysis modules were added. 

Existing modules that were reconceived include e.g., those 

for measuring Contraction, Dynamic Symmetry, Directness, 

and Suddenness. New modules include, e.g., computational 

models for the analysis of Fluidity, based on a physical 

spring-mass model, as described in [23], and modules for 

the analysis of Impulsivity, as described in [19]. Future 

work will focus on the analysis and investigation of features 

at layer 3 and of expressive qualities at layer 4. Some 

features in Table 3 (e.g., Tension, Origin, and Lightness) 

still need some extensive research and development work. 

This paper, however, focuses on the framework and a broad 

discussion of each feature and of each movement quality 

would go far beyond its scope. 

SONIFICATION OF DANCE PERFORMANCES 

Our research is inspired by the intersection of art and 

technology [3]. We are using the conceptual framework and 

its implementation for designing interactive sonifications 

translating movement qualities into the sonic domain. The 

work is carried out in collaboration with composers Pablo 

Palacio and Andrea Cera. Demonstrations were publicly 

presented at two major events in 2015 (the STARTS EU 

Workshop, Bozar, Brussels, Belgium, and the SONAR+ 

festival, Barcelona, Spain), showing the effectiveness of the 

approach2. 

An initial repository of multimodal recordings of movement 

qualities has been also collected and made available (see 

our other paper in these proceedings). Further, we are 

currently working with several choreographers and dancers 

in order to refine the definitions of the features and qualities 

included in the conceptual framework: for example, a paper 

in preparation presents a novel definition and software 

module to analyse Lightness. Further qualities are currently 

under analysis, also inspired by the expressive vocabulary 

of choreographers collaborating in DANCE. 

ACKNOWLEDGEMENTS 

This research has received funding from the European 

Union’s Horizon 2020 research and innovation programme 

under grant agreement No 645553 (H2020-ICT Project 

DANCE). The DANCE Project investigates how affective 

and relational qualities of human full-body movement can 

be expressed by the auditory channel. 

We thank our colleagues Paolo Coletta, Simone Ghisio, 

Paolo Alborno, Ksenia Kholykalova, Alberto Massari, and 

Roberto Sagoleo for their precious contributions, and the 

dancers Roberta Messa, Federica Loredan, Valeria Puppo. 

                                                           
2https://www.youtube.com/playlist?list=PLEVgkiAQI8zIFb

TFv8I7ioEpuDHNbYsdC 

REFERENCES 
1. Sarah Fdili Alaoui, Frédéric Bevilacqua, and Christian 

Jacquemin. 2015. Interactive Visuals as Metaphors for 

Dance Movement Qualities. ACM Trans Interact Intell 

Syst 5, 3: 13-24. 

2. Frédéric Bevilacqua, Bruno Zamborlin, Anthony 

Sypniewski  , Norbert Schnell, Fabrice Guédy, and 

Nicolas Rasamimanana. 2009. Continuous realtime 

gesture following and recognition. In Gesture in 

embodied communication and human-computer 

interaction, Stefan Kopp and Ipke Wachsmuth (eds.). 

Springer Berlin Heidelberg, Germany, 73-84. 

3. Antonio Camurri and Gualtiero Volpe. 2016. The 

Intersection of art and technology. IEEE Multimedia 

23, 1: 10-17. 

4. Antonio Camurri, Barbara Mazzarino, Matteo 

Ricchetti. Renee Timmers, and Gualtiero Volpe. 2004. 

Multimodal analysis of expressive gesture in music and 

dance performances. In Gesture-Based Communication 

in Human-Computer Interaction, Antonio Camurri and 

Gualtiero Volpe (eds.) Springer Berlin Heidelberg, 

Germany, 20–39. 

5. Antonio Camurri, Barbara Mazzarino, and Gualtiero 

Volpe. 2004. Expressive Interfaces. Cognition 

Technology & Work 6, 1, 15-22. 

6. Antonio Camurri, Carol L. Krumhansl, Barbara 

Mazzarino, and Gualtiero Volpe. 2004. An Exploratory 

Study of Anticipating Human Movement in Dance. In 

Proceeding of the 2nd International Symposium on 

Measurement, Analysis and Modeling of Human 

Functions. 

7. Antonio Camurri, Ingrid Lagerlof, and Gualtiero 

Volpe. 2003. Recognizing Emotion from Dance 

Movement: Comparison of Spectator Recognition and 

Automated Techniques. Int J Hum Comput Stud 59, 1-

2: 213-225.  

8. Antonio Camurri, Barbara Mazzarino, Gualtiero Volpe, 

Pietro Morasso, Federica Priano, and Cristina Re. 

2003. Application of multimdia techniques in the 

physical rehabilitation of Parkinson’s patients. Comput 

Anim Virtual Worlds (formerly Journal of Visualization 

and Computer Animation) 14, 5: 269-278. 

9. Ginevra Castellano, Marcello Mortillaro, Antonio 

Camurri, Gualtiero Volpe, and Kkaus Scherer. 2008. 

Automated Analysis of Body Movement in 

Emotionally Expressive Piano Performances. Music 

Perception 26, 2:103–119. 

10. Beatrice de Gelder. 2006. Towards the Neurobiology 

of Emotional Body Language. Nature Rev. 

Neuroscience 7, 3: 242-249. 

11. Paul Fraisse. 1963. The psychology of time. New York: 

Harper. 



12. Donald Glowinski, Floriane Dardard, Giorgio Gnecco, 

Stefano Piana, and Antonio Camurri. 2014. Expressive 

Non-Verbal Interaction in a String Quartet: an Analysis 

through Head Movements. Journal on Multimodal 

User Interfaces 9, 1: 55-68. 

13. Donald Glowinski, Maurizio Mancini, Roddie Cowie, 

Antonio Camurri, Carlo Chiorri, and Cian Doherty. 

2013. The movements made by performers in a skilled 

quartet: a distinctive pattern, and the function that it 

serves. Front. Psychol. 4: 841. 

14. Donald Glowinski, Nele Dael, Antonio Camurri, 

Gualtiero Volpe, Marcello Mortillaro, and Klaus 

Scherer. 2011. Towards a Minimal Representation of 

Affective Gestures. IEEE Trans Affective Comput 2, 2: 

106-118. 

15. Neville Hogan and Dagmar Sternad. 2007. On 

rhythmic and discrete movements: reflections, 

definitions and implications for motor control. Exp 

Brain Res 181, 1: 13–30. 

16. Rudolf Laban and F.C. Lawrence. 1947. Effort. 

MacDonald and Evans. 

17. Michelle Karg, Ali-Akbar Samadani, Rob Gorbet, 

Kolja Kühnlenz, Jesse Hoey, and Dana Kulić. 2013. 

Body movements for affective expression: a survey of 

automatic recognition and generation. IEEE Trans 

Affective Comput 4, 4: 341-359. 

18. Andrea Kleinsmith and Nadia Bianchi-Berthouze. 

2013. Affective body expression perception and 

recognition: A survey. IEEE Trans Affective Comput 4, 

1: 15-33. 

19. Radoslaw Niewiadomski, Maurizio Mancini, Gualtiero 

Volpe, and Antonio Camurri. 2015. Automated 

Detection of Impulsive Movements in HCI. In 

Proceedings of the 11th Biannual Conference of Italian 

SIGCHI Chapter (CHItaly 2015), 166-169. 

20. Katie Noble, Donald Glowinski, Helen Murphy, 

Corinne Jola, Phil McAleer, Nikhil Darshane, Kedzie 

Penfield, Sandhiya Kalyanasundaram, Antonio 

Camurri, and Frank E. Pollick. 2014. Event 

Segmentation and Biological Motion Perception in 

Watching Dance. Art & Perception 2, 1-2: 59–74. 

21. Jessica Phillips-Silver and Peter E. Keller. 2012. 

Searching for roots of entrainment and joint action in 

early musical interactions. Front Hum Neurosci 6: 26. 

22. Stefano Piana, Alessandra Staglianò, Francesca Odone, 

and Antonio Camurri. 2016. Adaptive Body Gesture 

Representation for Automatic Emotion Recognition. 

ACM Trans Interact Intell Syst 6, 1: 6. 

23. Stefano Piana, Paolo Alborno, Radoslaw 

Niewiadomski, Maurizio Mancini, Gualtiero Volpe, 

and Antonio Camurri. 2016. Movement Fluidity 

Analysis Based on Performance and Perception. In 

Proceedings of the 2016 CHI Conference Extended 

Abstracts on Human Factors in Computing Systems 

(CHI EA ’16), 1629-1636. 

24. Ernst Pöppel. 1997. A hierarchical model of temporal 

perception. Trends Cogn Sci 1, 2: 56–61. 

25. Joshua S. Richman and J. Randall Moorman. 2000. 

Physiological time-series analysis using approximate 

entropy and sample entropy. American Journal of 

Physiology. Heart and Circulatory Physiology 278, 6: 

H2039-H2049. 

26. Aneesha Singh, Stefano Piana, Davide Pollarolo, 

Gualtiero Volpe, Giovanna Varni, Ana Tajadura-

Jiménez, Amanda CdeC Williams, Antonio Camurri, 

and Nadia Bianchi-Berthouze. 2016. Go-with-the-

Flow: Tracking, Analysis and Sonification of 

Movement and Breathing to Build Confidence in 

Activity Despite Chronic Pain. Human-Computer 

Interaction 31, 3-4: 335-383. 

27. Giovanna Varni, Gualtiero Volpe, and Antonio 

Camurri. 2010. A System for Real-Time Multimodal 

Analysis of Nonverbal Affective Social Interaction in 

User-Centric Media. IEEE Trans Multimedia 12, 6: 

576-590. 

28. Gualtiero Volpe, and Antonio Camurri. 2011. A system 

for embodied social active listening to sound and music 

content. ACM Journal on Computing and Cultural 

Heritage, 4, 1:2-23. 

29. Harald G. Wallbott. 1998. Bodily Expression of 

Emotion. European Journal Social Psychology 28, 6: 

879-896. 

 


