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Automated Laughter Detection From
Full-Body Movements

Radoslaw Niewiadomski, Maurizio Mancini, Giovanna Varni, Gualtiero Volpe, and Antonio Camurri

Abstract—In this paper, we investigate the detection of laugh-
ter from the user’s nonverbal full-body movement in social and
ecological contexts. Eight hundred and one laughter and non-
laughter segments of full-body movement were examined from
a corpus of motion capture data of subjects participating in social
activities that stimulated laughter. A set of 13 full-body move-
ment features was identified, and corresponding automated ex-
traction algorithms were developed. These features were extracted
from the laughter and nonlaughter segments, and the resulting
dataset was provided as input to supervised machine learning tech-
niques. Both discriminative (radial basis function-support vector
machines, k-nearest neighbor, and random forest) and probabilis-
tic (naive Bayes and logistic regression) classifiers were trained and
evaluated. A comparison of automated classification with the rat-
ings of human observers for the same laughter and nonlaughter
segments showed that the performance of our approach for auto-
mated laughter detection is comparable with that of humans. The
highest F-score (0.74) was obtained by the random forest classifier,
whereas the F-score obtained by human observers was 0.70. Based
on the analysis techniques introduced in the paper, a vision-based
system prototype for automated laughter detection was designed
and evaluated. Support vector machines (SVMs) and Kohonen’s
self-organizing maps were used for training, and the highest F-
score was obtained with SVM (0.73).

Index Terms—Automated analysis of full-body movement, body
expressivity, detection, laughter, motion capture, multimodal
interaction.

I. INTRODUCTION

Laughter is a powerful signal capable of triggering and fa-
cilitating social interaction. Grammer [1] suggests that it may
convey social interest and reduce the sense of threat in a group
[2]. Further, laughter seems to improve learning of new activi-
ties from other people [3], creativity [4], and it facilitates socia-
bility and cooperation [5]. Healthy positive effects of laughter
have been observed with people living with stress or depression
[6]. The EU-ICT FET Project ILHAIRE1 aims to study how
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machines could interact with users through laughter: for ex-
ample, to know when the user is laughing [7], [8], to measure
intensity of laughter [9], and to distinguish between different
types of laughter [10] by means of laughter enabled virtual
agents [11], [12].

In this paper, we propose models and techniques for the auto-
mated detection of laughter from the user’s full-body movement
in social and ecological contexts. Whereas research has focused
on speech and facial expression as major channels for detecting
laughter (e.g., [13], [14]), capturing them reliably in a social
and ecological context is a complex task. Consider an exam-
ple involving a small group of friends standing and conversing
where robust capture of facial expressions is challenging and/or
costly. This situation requires multiple cameras capturing the
face of each user with enough detail to perform analysis. Due to
the user’s movement, the cameras also need to either track and
follow the movements or continuously zoom into the location
containing the user’s face. In relation to speech, the well-known
cocktail party effect [15] describes how people are capable of
focusing attention on a single conversation by filtering out other
conversations and noise. Audio source separation techniques are
still an open research area, and their output is unlikely to be re-
liable enough for laughter analysis. In contrast, low-cost motion
tracking and analysis systems can track and analyze the full-
body movement of each user. For example, by analyzing depth
images, Microsoft Kinect can reliably retrieve the silhouette of
each user and her body skeleton, including the 3-D displacement
of each body joint, at a frame rate of 30 frames/s.

In this study, we analyze laughter by focusing on full-body
expressive movement captured with a motion capture system.
We do not distinguish among different laughter types nor de-
termine laughter intensity. Our study demonstrates that, when
data from other modalities are not available or are noisy, the
body is a robust cue for automated laughter detection. We also
present and evaluate a practical application of the results of our
study that uses a real-time system prototype based on low-cost
consumer hardware devices. The prototype is developed with
the freely available EyesWeb XMI2 research platform [16], [17]
and applies real-time algorithms for automated laughter detec-
tion starting from data captured by RGB-D sensors (Kinect and
Kinect2).

In Section II, we describe the state of the art of laughter
analysis. Our study on laughter detection from motion capture
data is described in Section III. Section IV presents a real-time
system prototype for automated laughter detection. We conclude
the paper in Section V.

2http://eyesweb.infomus.org
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II. STATE OF THE ART

Laughter can be expressed with acoustic, facial, and full-body
cues. Most research on laughter expressive patterns focuses
on audio and facial expressions. Nevertheless, results of our
preliminary experiment [18] show that people are able to rec-
ognize laughter from body movements only. In the experiment,
ten animations displaying full-body motion capture data corre-
sponding to laughter and nonlaughter episodes were shown to
participants. The results showed a recognition rate over 79%.
McKeown et al. [10] investigated the human capability to dis-
tinguish between four different laughter types in a perceptive
evaluation. People were able to correctly classify four laughter
types with an accuracy rate of 28% (chance level was 25%). In
order to check whether it is possible to distinguish between dif-
ferent laughter types only from body movements, Griffin et al.
[8] conducted a perceptual study with the use of avatars an-
imated with MoCap data. Thirty-two participants categorized
126 stimuli using five labels: hilarious, social, awkward, fake,
or nonlaughter. The agreement rates between the participants
varied from 32% (fake laughter) to 58% (hilarious laughter).

Body movements of laughter were described by Ruch and
Ekman [19]. According to them, most of the body movements
in laughter are related to respiration activity. These may in-
clude “the backward tilt of the head,” “raise and straighten of
the trunk,” and “shaking of the shoulders and vibrations of the
trunk” [19]. Other body movements (OBMs) are also observed
in laughter, which are not related to respiration such as “rocking
violently sideways” or “hands throwing” [19]. A more formal
description of body movements in laughter was proposed by
Ruch et al. [20]. They developed an annotation scheme that
specifies, for each part of the body (head, trunk, arms, legs), the
shape of movement as well as its dynamic and expressive quali-
ties. For example, descriptors such as “shaking,” “throwing,” or
“rocking” characterize velocity of movement or its tendency to
be repetitive. Among the movements observed in laughter are:
head nodding up and down, or shaking back and forth; shoulders
contracting forward or trembling; trunk rocking, throwing back-
ward and forward or straightening backward; arm throwing; and
knees bending.

Existing laughter detection algorithms mainly focus on audio
(e.g., [21], [22]), physiological (e.g., [23]), or combined facial
and audio laughter detection (e.g., [13], [14]). Such work sup-
ports classifying laughter segments offline, but also provides
automatic online segmentation and detection. Importantly, most
do not include body movements data.

Aiming at detecting laughter from audio, Truong and
Leeuwen [21] compared the performance of different acous-
tic features (i.e., perceptual linear prediction features, pitch and
energy, pitch and voicing, and modulation spectrum features)
and different classifiers. Gaussian mixture models trained with
perceptual linear prediction features performed the best with
equal error rate (EER) ranging from 7.1% to 20.0%. Knox
and Mirghafori [24] applied neural networks to automatically
segment and detect acoustic laughter from conversation. They
used mel frequency cepstral coefficients (MFCC) and the fun-
damental frequency as features and the obtained EER was 7.9%.

Salamin et al. [22] proposed an automatic detection of acoustic
laughter in spoken conversations captured with mobile phones.
They segmented audio recordings into four classes: laughter,
filler, speech, and silence. Hidden Markov models (HMMs)
combined with statistical language models were used, and re-
ported F-scores for laughter varied between 49% and 64%.

With respect to multimodal detection and fusion, Escalera
et al. [14] applied stacked sequential learning for audio-visual
laughter detection. Audio features were extracted from the
spectrum and complemented with accumulated power, spec-
tral entropy, and fundamental frequency. Facial cues included
the amount of mouth movement (between consecutive frames)
and the laughter detection obtained from a classifier trained on
principal components extracted from a labeled dataset of mouth
images. Results showed an accuracy between 77% and 81%, de-
pending on the type of data (multimodal or audio only). Petridis
et al. [13] proposed an algorithm based on the fusion of au-
dio and facial modalities. Using 20 points (facial features), six
MFCCs, and zero crossing rate (audio features), they trained a
neural network for a two-class (laughter versus speech) discrim-
ination problem, and they showed the advantage of a multimodal
approach over video-only detection (with accuracy of 83.3% for
video-only and of 90.1% for multimodal analysis). Scherer et al.
[25] compared the efficacy of various classifiers in audio–visual
offline and online laughter detection in natural multiparty con-
versations. SVM was the most efficient in the offline classifica-
tion task, while HMM received the highest F-scores in online
detection (72%). Tatsumi et al. [23] argued that people may hide
their amusement (and laughter), and that physiological cues may
be indicators of such inhibited laughter. They detected inhibited
laughter using facial electromyogram, skin conductance, and
electrocardiogram data. Cosentino et al. [26] detected laughter
expressions using the data from inertial measurement units and
EMG sensors placed directly on participant torso.

Body movements of laughter were rarely considered in laugh-
ter detection algorithms. Mancini et al. [7] proposed the body
laughter index (BLI). Their algorithm, based on a small number
of nonverbal expressive body features extracted with computer
vision methods, tracks the position of the shoulders in real time
and computes an index, which tends to 1 when laughter is more
likely to occur. The BLI is a linear combination of the kinetic
energy of shoulders, of the Pearson’s correlation between the
vertical positions of the shoulders, and of the periodicity of
movement. Griffin et al. [8] proposed to detect different types
of laughter from motion capture data of body movements. They
used 126 segments from the UCL body laughter dataset of natu-
ral and posed laughter in both standing and sitting postures. The
segments were divided into five classes according to a percep-
tual study with stick-figure animations of motion capture data.
They extracted 50 features: 1) low-level features correspond-
ing to distances and angles between the joints, 2) high-level
features, e.g., kinetic energy of certain joints, spectral power
of shoulder movements, or smoothness of shoulders trajectory.
Features took into consideration both upper and lower body
parts. In the last step, they applied a variety of classifiers. Re-
sults show efficacy in laughter detection above chance level for
three classes: hilarious laughter (F-score: 60%), social laughter
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(F-score: 58%), and nonlaughter (F-score: 76%), using random
forest (RF).

The described laughter detection algorithms mainly focus on
acoustic and facial cues. In ecological multiparty interaction,
the audio extraction of a single person’s laughter and nonin-
vasive face tracking is still challenging. It is easier to track
the users’ body movements during the interaction. Further, de
Gelder et al. [27] suggest that bodily cues are particularly suit-
able for communication over larger distances, whereas facial
expressions are more suitable for a fine-grained analysis of af-
fective expressions. This suggests that full-body movement can
play an important role in social communication.

Our study on automated full-body laughter detection aims:
1) to detect laughter from full-body movement only;
2) to detect laughter occurring in natural spontaneous con-

texts;
3) to distinguish laughter from other bodily expressive ac-

tivities that may occur in the same contexts.
Similar work was carried out by Griffin and colleagues [8].

Both our and their work focus on laughter full-body movements
in natural and spontaneous contexts. While the main focus of
our study is on discriminating laughter from nonlaughter ex-
pressions, Griffin et al. [8] propose an automatic recognition
system for discriminating between the body expressions that
are perceived as different laughter types and the ones that are
perceived as nonlaughter. Second, we use a top-down approach
for feature selection. Our set of high-level features is based on
the body annotation schema of laughter presented in [20]. Our
movement features capture the dynamics of movement, e.g., its
periodicity or suddenness. Such features are representative of
biological motion and, consequently, have a meaningful inter-
pretation. To define ground truth, segments labeling was per-
formed by taking into account the available synchronized data,
i.e., motion capture, video, and audio. Next, we compare the
results of automated classification and humans’ classification
of laughter stick-figure animations against the ground truth. A
larger set of laughter segments was used in our study (801),
compared with Griffin et al. (i.e., 126). Additionally, we present
a real-time system prototype based on the results of our study.

III. AUTOMATED LAUGHTER DETECTION: DATA SET

AND EXPERIMENTS

This section describes a study in which we recorded people
while performing activities involving laughter and nonlaughter
movements (see Section III-A). Then, we segmented data cor-
responding to such movements to generate a set of laughter (see
Section III-B1) and nonlaughter (see Section III-B2) segments.
The data of these two sets were used to define feature vectors
(see Section III-C) which were, next, provided as input to su-
pervised machine learning algorithms (see Section III-D). We
compared machine with human laughter classification ability on
the same dataset (see Section III-E).

A. Multimodal and Multiperson Corpus of Laughter

We used the multimodal and multiperson corpus of laugh-
ter in interaction (MMLI) corpus, recorded in collaboration
with ILHAIRE partners from Telecom ParisTech, University

of Augsburg, and University College of London [28]. This cor-
pus consists of full-body data collected with high precision
motion capture technology. The corpus is also characterized by
high variability of laughter expressions (variability of contexts,
many participants). It contains natural behaviors in multiparty
interactions, mostly spontaneous laughter displays. The creation
of the experimental protocol was inspired by the previous works
carried out within the ILHAIRE Project. McKeown et al. [29]
proposed guidelines for laughter induction and recording. They
stressed the importance of creating a social setting that is con-
ducive to laughter generation by avoiding the formality of the
laboratory environment, recruiting participants having strong
affiliation, or using social games as the laughter elicitation
instrument.

To capture laughter in different contexts, we invited groups
of friends to perform six enjoyable tasks (T1–T6). In addition
to classical laughter inducing tasks, such as watching comedies,
participants were asked to play social games, i.e., games regu-
lated by one simple general rule in which players are left free
to improvise. According to [29], a lack of detailed rules could
encourage easy-going spontaneous behavior.

1) Tasks: Participants were asked to perform the following
tasks: T1) watching comedies together, T2) watching comedies
separately, T3) “Yes/no” game, T4) “Barbichette” game, T5)
“Pictionary” game, and T6) tongue twisters.

T1 and T2 are classic laughter-inducing tasks, i.e., watching
comedies selected by experimenters and participants. Compared
with other laughter corpora (e.g., [30]), participants were not
alone; they could talk freely (e.g., comment videos) and hear
each other. In T2, a curtain impeded one participant to see the
other ones during task execution, still allowing her to hear them.
Tasks T3 and T4 consisted of two social games that were carried
out in turns with participants switching between different roles
and competing against each other. In T3, one of the participants
had to quickly respond to questions from the other participants
without saying sentences containing either “yes” or “no.” The
role of the other two participants was to ask questions and dis-
tract her, in an attempt to provoke the use of the “forbidden”
words. T4 is a French game for children whose aim is to avoid
laughing. Two participants faced each other, made eye contact,
and held the other person’s chin. Participants were allowed to
talk, move, and perform facial expressions, always maintaining
physical and eye contact. The person who laughed first lost the
game. In T5, one participant drew words printed on a piece of
paper extracted from an envelope. Her task was to convey the
word to the other participant by drawing on a large board. T6
consisted of participants pronouncing tongue twisters in differ-
ent languages.

2) Technical Setup: During corpus collection, we captured
full-body movement of up to three human participants at the
same time. For this purpose, we recorded:

a) the motion data of two participants using the Xsens MVN
Biomech system 4. The system consists of 17 inertial
sensors placed on velcro straps. Data were recorded at
120 frames/s; each frame consisting of the 3-D position
of 22 body joints;

b) audio samples captured with wearable microphones
(Mono, 16 kHz) placed close to the participants’ mouth;
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Fig. 1. Synchronized data view.

c) four video streams captured with Logitech Webcam Pro
9000 (640×480, 30 frames/s) recorded the room from
different viewpoints in order to get the frontal view of the
participants;

d) two high-frame rate video streams captured with Philips
PC Webcam SPZ5000 (640×480, 60 frames/s) placed
over tripods recorded close-ups of the participants’ face.

3) Protocol: We recruited groups of friends. Participants
were selected from university (Master and Ph.D.) students.
Data collection consisted of recording all interactions. We also
recorded participants during pauses between tasks. The whole
corpus consists of six sessions with 16 participants: four triads
and two dyads, age 20–35; three females; eight French, two Pol-
ish, two Vietnamese, one German, one Austrian, one Chinese,
and one Tunisian. Participants were allowed to speak the langua-
ge they used to communicate with each other most of the time.

B. Segmentation

We analyzed and segmented data from ten participants (eight
men, two women) involved in four tasks (T1, T3, T4, and T5).
We skipped the data recorded during two tasks: T2 (watching
comedies separately), because some groups did not perform it,
and T6, because during tongue twisters people laughed while
speaking; therefore, it was particularly difficult to precisely seg-
ment and annotate this task.

For each participant and each task, the synchronized streams
of motion capture data (visualized through a graphical repre-
sentation of a skeleton), six RGB videos, and the corresponding
audio recordings were used for performing segmentation (see
Fig. 1). We implemented software tools for streams synchro-
nization and segmentation by developing modules for EyesWeb
XMI. These tools are available for research purposes on the
EyesWeb XMI forum.3 Segments were annotated depending on
whether they contained laughter body movements (LBMs) or
other kinds of body movements occurring during spontaneous
interaction.

3http://forum.eyesweb.infomus.org

1) Laughter Body Movements: This set consists of 316 seg-
ments in which participants perform full-body movements dur-
ing laughter. Observers watched and segmented the data corpus,
performing a two-phases process.

a) Laughter segmentation: An observer watched and lis-
tened to all recorded and synchronized data from the MMLI
corpus, isolating laughter segments, where laughter could be
observed or heard from at least one modality (i.e., face, audio,
or full-body movement). Isolating laughter segments by tak-
ing into account the synchronized modalities was indispensable
to establish ground truth. The result of the process was a set
of 404 laughter segments that could contain full-body-only or
audio-only laughter cues.

b) Laughter annotation: Two raters watched the 404
laughter segments resulting from the segmentation. They ob-
served a graphical interface showing the output of six cameras
as well as the graphical representation of a skeleton; see Fig. 1.
The two raters did not hear any audio. They focused on the body
movement cues of laughter [19], [20] (see also Section II):

i) F1—head side movement: head movements on the
frontal plane, the plane dividing the body into front
and back halves;

ii) F2—head front/back movement: head movements on the
sagittal plane, the plane dividing the body into left and
right halves;

iii) F3—weight shift: a change in body posture during which
the user switches the leg on which body weight is mainly
applied;

iv) F4—knee bending: leg movement during which one or
two legs are bent at the knee;

v) F5, F10, and F13—abdomen, arm, and shoulder shak-
ing: according to [12] and [19], a laughter episode can
exhibit several repetitive body pulses that are caused
by forced exhalation; these pulses can induce a repeti-
tive fast contraction/vibration of user’s abdomen, arm,
and/or shoulder; we define such a movement type as a
shaking movement;

vi) F6 and F12—trunk and arm straightening: trunk/arm
is extended, that is, a rotation is performed at the
pelvis/elbow level, increasing the angle between respec-
tively, trunk/upper arm and legs/lower arm;

vii) F7 and F11—trunk and arm rocking: according to [12]
and [19], during laughter, contraction/vibration induced
by forced exhalation can be accompanied by OBMs
such as sideways trunk and arm rocking, which are,
however, slow and repetitive; we define such a move-
ment type as a rocking movement;

viii) F8 and F9—trunk and arm throwing: quick movement
of trunk/arm, in any direction, that is, a quick modifica-
tion of head/hand position in space.

The result of the annotation process is the LBM set, con-
sisting of 316 laughter segments exhibiting visible full-body
movements (movements in which one or more of the cues F1–
F13 were observed). In the excluded 88 segments, none of the
cues F1–F13 was observed by any rater. The interrater agree-
ment between the two raters, measured with Cohen κ, was
0.633, which is considered a “good” result [31]. In case of
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Fig. 2. Some frames of a laughter episode. Trunk throwing (F8) and knee bending (F4) can be observed.

TABLE I
DESCRIPTIVE STATISTICS

Type No episodes/no participants Total duration (s) Min duration (s) Max duration (s) Avg (s) Std (s)

Laughter Body Movements 316/10 27 min 3 s 1.4 s 46.4 s 5.13 s 4.28 s
Other Body Movements 485/10 46 min 18 s 1.4 s 23.3 s 5.72 s 2.59 s

disagreement between raters (e.g., only one rater observed
LBMs) such a segment was also included into the LBM set.
In total, 254 segments were evaluated by both raters as display-
ing full-body movement cues of laughter; 62 segments on which
the two raters did not agree were also added to the set. Statistical
information on the LBM set is presented in Table I .

2) Other Body Movements: The same observer performed
another segmentation by isolating segments exhibiting full-
body movements that did not occur during laughter such as
folding/unfolding arm gestures, walking, or face rubbing. All
available modalities (audio, video, MoCap) were observed and
listened to during the segmentation process. The result of the
segmentation process is the OBM set, consisting of 485 seg-
ments of full-body movements occurring without laughter. The
statistical information on the OBM set is presented in Table I.
All 801 segments containing MoCap data can be downloaded
from http://www.infomus.org/ILHAIRE/mmli.

C. Feature Vector

Starting from the LBM and OBM sets, we built a feature
vector to be provided as input to classification models described
in Section III-E. The feature vector contains the 13 full-body
movement features presented in Section III-B1. The algorithms
for extracting these features are based on a common set of prim-
itive functions. We first provide a description of such primitives;
then, each feature is computed as a combination of primitives.
Algorithms are implemented in MATLAB. Each feature is ex-
tracted on the entire length of each LBM or OBM segment: For
each of the 801 segments, we obtained a 13-value feature vector.

1) Primitive Functions
a) Distance

D = Distance(J1, J2). (1)

Given two body joint labeled as J1 and J2, it returns
a 1-D vector D in which the ith value is the distance
between the two joints at frame i.

b) Speed

S = Speed(J1). (2)

Given one body joint labeled as J1, it returns a 1-D
vector S in which the ith value is the joint’s speed
at frame i. Speed is computed with the MATLAB
diff function, and then, it is filtered to remove
spikes and noise. We apply a low-pass Savitzky–
Golay filter [32] to the speed of the participant’s
joints. We do not apply any filter to positional data.
In particular, we run the following MATLAB func-
tion on the participant’s joints speed data: sgo-
layfilt(speed_data,3,41). The parame-
ters N=3,M=41 define a filter with a cutoff fre-
quency of about 1 Hz.

c) Normalize

VN = Normalize(V ). (3)

The provided 1-D vector V is normalized in [0, 1]
by 1) subtracting the minimum element from all
elements contained in the vector, and 2) dividing all
elements of the vector by the maximum element of
the vector:

d) Threshold_Check

A = Threshold Check(v, t, f). (4)

The value of v is compared with the threshold t.
However, a tolerance factor f ∈ [0, 1] is taken into
account. If v is lower than t, then A = 0; if v is
higher than t but lower than t + (t ∗ f), then A =
(v − t)/(t ∗ f); A = 1 otherwise.

e) Range_Check

A = Range Check(v, r1 , r2 , f). (5)

This function compares the input value v with the
range [r1 , r2 ], taking into account a tolerance factor
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Fig. 3. Detected peaks of the participant’s right shoulder position |rs| are the
local maxima exhibiting slope values higher than a given threshold. In the graph,
peaks are highlighted by a gray circle, that is, the algorithm does not detect all
local maxima as peaks. The approximate peaks frequency is then computed as
the ratio between the segment length and the number of peaks. In the example,
the segment length is approximately 320 frames, that is, 2.6 s at 120 frames/s.
The approximate peaks frequency is 6.0/2.6 = 2.30 Hz.

f ∈ [0, 0.5]. If v is lower than r1 or higher than r2 ,
then A = 0; if v is higher than r1 but lower than r1 +
(r2 − r1) ∗ f , then A = (v − r1)/((r2 − r1) ∗ f);
if v is lower than r2 but higher than r2 − (r2 −
r1) ∗ f , then A = −(r2 − v)/((r2 − r1) ∗ f); A =
1 otherwise.

f) Frequency_Range_Check

C = Frequency Check(V, f1 , f2). (6)

The goal of this function is to compare the frequency
of variation of the 1-D vector V provided as input
with the range of frequencies [f1 , f2 ]. Estimation of
the frequency of variation of the input 1-D vector is
performed as follows.
We apply to the input vector V a function to find
peaks.4 We apply a least squares curve fitting to find
all local maxima in the input data in which the fitted
curve exhibits a slope higher than a given threshold.
We fixed this threshold to find peaks corresponding
to frequencies higher than fL .
If 0 or 1 peaks are found, then we set C = 0 and
the algorithm terminates. If two or more peaks are
detected, then we compute their approximate fre-
quency F (in Hz) of repetition as the ratio between
the number of peaks and the length of the segment.
For example, if three peaks are detected in a seg-
ment lasting 4 s, we estimate a peaks frequency of
F = 3/4 = 0.75 Hz.
We finally compare the computed frequency F with
[f1 , f2 ] by applying the Range Check primitive. If
F is outside the range, then we set C = 0. Other-
wise, the value of C will tend to reach the value of
1 as long as the value of F tends to reach the center
of the interval [f1 , f2 ].
Fig. 3 illustrates the computation of participant’s
right shoulder frequency of movement.

2) Movement Features Extraction: The MATLAB imple-
mentation of the 13 full-body movement features is illustrated in

4For further details, see http://terpconnect.umd.edu/∼ toh/spectrum/Peak
FindingandMeasurement.htm

Fig. 4. Movement features extraction algorithms: On the left, body joints are
selected; then, their positional data are provided as input to the algorithms in
processing portion; the computed features names are reported on the right.

Fig. 4. On the left side of the figure, skeleton joints labels are re-
ported, except for joint (0, 0, 0), which refers to the world’s cen-
ter. All features algorithms are based on the primitive functions,
which are reported in the middle of the figure. The functions
var and cumsum correspond to, respectively, the MATLAB
variance and integral (cumulative sum) functions. On the right,
the computed movement features names are reported.

In Fig. 4:
a) algorithms marked with an * are computed two times,

both on the joints reported on the left and on the same
joints belonging to the opposite side of body; then, the
computed quantities are summed before continuing with
the algorithm. For example, for feature F4, the cumula-
tive sum (the block marked with an *) is computed two
times, on joints right upper leg, right lower leg, and right
foot, and on joints left upper leg, left lower leg, and left
foot. Then, the resulting cumulative sums are summed to
compute knee bending.

b) Threshold_Check is performed two times: on the neck-
pelvis distance speed to compute trunk throwing and on
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the sum between right hand-pelvis distance speed and left
hand-pelvis distance speed to compute arm throwing. The
two thresholds, 0.15 and 0.60, respectively, were deter-
mined empirically by measuring the two speed values on
movements that, according to annotation, exhibited the
trunk throwing and arm throwing movement features.

c) Frequency_Range_Check is performed four times to
check whether some distances vary with a frequency in
a given range. In particular, we focused on two ranges:
[0.5, 2.0] Hz and [1.5, 5.5] Hz. The first one corresponds
to frequencies typical of rocking movements, and the sec-
ond one corresponds to shaking movements. According
to [12] and [19], the frequency of trunk and limbs rock-
ing during laughter varies in the first range, while the
frequency of abdomen and shoulders shaking varies in the
second one.

We checked the pairwise correlations between features F1–
F13 on the whole dataset. The mean absolute correlation is
0.075, and the standard deviation is 0.14 (only 27 out of 78 pairs
had significant correlations). The highest correlations were ob-
served for the pairs: F10, F11 (r = −0.731, p < 0.001), F1, F2
(r = 0.6024, p < 0.001) and F5, F13 (r = 0.4257, p < 0.001).
The pair F10, F11 corresponds to arm shaking and rocking. The
high negative correlation is not surprising, as these two features
are measuring two different types of repetitive movements (slow
and quick) defined with two different ranges of frequencies. The
pairs F1, F2 corresponds to the head movements on the different
axes. As the head movements cannot be performed exclusively
on one plane in real-life settings, a higher correlation can be
expected also in this case. Finally, in the case of the pair F5,
F13, both features measure repetitive movements having the
same ranges of frequencies. The higher correlation could be
also expected in this case, as these movements are related to the
respiration pattern [19].

D. Automated Classification

The performances of five supervised machine learning algo-
rithms were tested to classify LBM versus OBM segments: ra-
dial basis function-support vector machine (rbf-SVM), k-nearest
neighbor (k-NN), random forest (RF), naive Bayes (NB), and
logistic regression (LR). We chose these algorithms in order to
evaluate how both discriminative (SVM, k-NN, RF) and proba-
bilistic algorithms (NB, LR) work on our dataset. The averaged
performance of each classifier was assessed via a multiple-run k-
fold (nested) stratified cross validation. In our study, we adopted
five run and ten folds. The inner loop of the cross validation
aimed at performing model selection. The parameters of rbf-
SVM and k-NN were estimated via a grid search approach with
a fivefold stratified cross validation. A fivefold cross validation
was used to tune the number of trees composing the RF, while
the number of attributes for each tree in the forest was cho-
sen equal to the square root of the number of features. For the
NB classifier, the likelihood of the features is assumed to be
Gaussian.

Table II reports average confusion matrices for k-NN and
SVM algorithms. Table III shows the performance of each clas-

TABLE II
AVERAGE VALUES OF CONFUSION MATRICES FOR K-NN

AND SVM ALGORITHMS

k-NN SVM

Laughter Nonlaughter Laughter Nonlaughter

Laughter 189.6 126.4 213.2 102.8
Nonlaughter 72.6 412.4 126.2 358.8

TABLE III
WEIGHTED AVERAGE PRECISION, RECALL, AND F-SCORE

FOR ALL SEGMENTS (CLASSES LBM+OBM)

Avg. Precision Recall F-score

SVM 0.72 0.71 0.71
k-NN 0.75 0.75 0.74
RF 0.73 0.73 0.72
LR 0.72 0.71 0.71
NB 0.69 0.65 0.59

TABLE IV
PRECISION, RECALL, F-SCORE FOR LAUGHTER BODY

MOVEMENT SEGMENTS (CLASS LBM ONLY)

Precision Recall F-score

SVM 0.62 0.67 0.64
k-NN 0.72 0.60 0.65
RF 0.66 0.67 0.66
LR 0.64 0.64 0.64
NB 0.72 0.21 0.32

TABLE V
PRECISION, RECALL, AND F-SCORE FOR OTHER BODY MOVEMENT

SEGMENTS (CLASS OBM ONLY)

Precision Recall F-score

SVM 0.78 0.73 0.75
k-NN 0.76 0.85 0.80
RF 0.78 0.76 0.77
LR 0.77 0.76 0.76
NB 0.65 0.94 0.77

sifier in terms of Precision, Recall and F-score. Tables IV and V
show the same metrics for LBM and OBM classes, respectively.
All the classifiers were able to discriminate LBM from OBM
well above chance level (50%). To determine whether one of the
learning algorithms outperforms the other ones on our dataset,
we carried out a five-run tenfold cross validation in the use all
data version as described in [33]. The use all data approach
with calibrated degrees of freedom is a successful method to
compensate for the difference between the desired Type I error
and the true Type I error. It was chosen because it is the con-
ceptually simplest test for comparing supervised classification
algorithms. Further, it outperforms on power and replicability
other common tests such as, for example, 5X2 cross-validation,
resampling, and k-fold cross validation [33].
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Fig. 5. Results of human classification of 801 segments.

F-score values were computed for each algorithm, and the
differences among these values were then computed for each
pair of algorithms. Such resulting differences are used as inde-
pendent samples for Z-tests. Bonferroni adjustment of α was
used where necessary to compensate for multiple comparisons
when Z statistics are calculated. We chose to compare between
the algorithms belonging to the same class, that is discriminative
or probabilistic and, then, in case of significant differences, to
compare the two winning algorithms.

The Z-tests indicated no difference among all the discrim-
inative nor among all the probabilistic classifiers. The Z-
test between one discriminative (SVM) and one probabilistic
(NB) classifier showed a significant difference (Z = 5.514,
p < 0.00001). We conclude that the discriminative classifier
outperforms the probabilistic classifier on our dataset.

E. Machine Versus Human Classification

To evaluate our approach, we measured the human ability to
recognize laughter from body movements. We asked to label
the segments of our dataset in an evaluation study that was
carried out through an online questionnaire consisting of videos
and questions. Participants had to watch stick-figure animations
of a skeleton (i.e., with no audio and no facial expressions; see
Fig. 2) and answer to the question: “Do you think that the person
represented in the video is laughing?”

A web page displayed one full-body skeleton animation of
motion capture data corresponding to one segment among the
segments of both LBM and OBM (i.e., the whole machine
learning dataset). Participants could watch each animation as
many times as they wanted and they had to decide whether the
displayed skeleton was laughing or not. Each participant could
evaluate any number of animations. Evaluation was performed
by keeping the participants unaware of the cause, of the mech-
anisms, and of the context of laughter [34]. Animations were
displayed in a random order: Each new animation was chosen
among the animations that received the smaller number of evalu-
ations. This way, we obtained a balanced number of evaluations
for all segments.

In total, 801 stick-figure animations were used in this study.
We collected 2403 answers from anonymous participants. Each
animation was labeled three times. Next, for each segment, the
simple majority of the votes was considered to assign it to a
class. Fig. 5 shows the final results. Most of the OBM seg-
ments were classified correctly (i.e., 425 out of 485). About half
of the LBM segments were incorrectly labeled as nonlaughter
segments (i.e., 171 out of 316). Our participants tended to often

TABLE VI
AVERAGED AND SINGLE-CLASS PRECISION AND F-SCORE

OF MACHINE AND HUMAN CLASSIFICATION

Precision (F-score)

Measure Class Weighted Avg. Laughter Nonlaughter

SVM 0.72(0.71) 0.62(0.64) 0.78(0.75)
k-NN 0.75(0.74) 0.72(0.65) 0.76(0.80)
RF 0.73(0.72) 0.66(0.66) 0.78(0.77)
LR 0.72(0.71) 0.64(0.64) 0.77(0.76)
NB 0.69(0.59) 0.72(0.32) 0.65(0.77)
Human 0.71(0.70) 0.70(0.55) 0.71(0.78)

use the “nonlaughter” label. The accuracy of the human clas-
sification is 0.71, the global F-score is 0.695. The results are
presented in Table VI.

There is a difference between the selection done by raters
skilled in nonverbal body movements (see Section III-B1) and
the results of this study. However, that these two tasks are dif-
ferent: the elements of the LBM set were chosen using precise
criteria that were explicitly explained to the raters (i.e., cues
F1–F13), whereas in the perceptive study, we asked participants
to express their overall feeling about animations. In order to
check whether this difference depends on a specific subject,
we carried out additional analyzes on the LBM segments only.
The percentage of correctly annotated laughter segments ranges
from 5% to 61%. The participants did not recognize most of the
laughs of subjects S9 (5% correctly recognized animations), S6
(30%), and S10 (33%).

F. Discussion

The results of our study show that it is possible to build a ma-
chine that can recognize laughter from full-body movements.
Both humans and machines exhibited similar performance in
such a task: They are both well above chance level (50%). Inter-
estingly, when comparing the Recalls and F-scores of automatic
classification and human observers (see Table VI), the number
of true positives and true negatives in automatic classification
is more balanced than for the human observers (e.g., recall
for SVM is 0.67 (laughter) versus 0.73 (nonlaughter), while
for human classification is 0.46 versus 0.88). Whereas humans
were not particularly good in detecting laughter segments, some
classification algorithms (e.g., SVM) were able to classify on
average more laughter segments correctly (but less nonlaughter
segments).

An limitation of our study is that the number of segments per
participant in our dataset was not balanced. During the record-
ings, important differences in number and intensity of laughs
between participants were observed (see [28]). The personal
laughing styles of the participants, who more frequently ap-
pear in the dataset may have influenced the models the machine
learning algorithms generated. An advantage of our approach is
that the features we compute strictly follow the latest theoretical
works on the expressive pattern of laughter.

It would be interesting to compare the classification accuracy
when using different techniques and modalities, e.g., audio,
video. However, direct comparison of our results with other
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Fig. 6. Our system prototype for automated laughter detection from full-body
movement: (a) the prototype system architecture, (b) a user is sitting in front of
the system: the user’s body silhouette is extracted and segmented in two parts:
head (upper box marked by H) and trunk (lower box marked by T).

laughter detection algorithms is not possible, because: 1) such
algorithms were trained and tested on different datasets (and
full-body movement data are not available), and 2) it is difficult
to record at the same time different modalities (e.g., spontaneous
facial expressions and body movements) with the existing tech-
nology (see Section I). We made our training set publicly avail-
able to facilitate future research in this area. Laughter detection
from acoustic cues is around 70–80%, whereas multimodal (fa-
cial and audio) detection can even reach the accuracy of 90%.
Even if the results of our classifiers are lower than results of other
classifiers trained on acoustic or multimodal data, our classifiers
can be used when data from other modalities is not available or
can be noisy.

Comparing with the results of Griffin et al. [8], we obtain
comparable F-scores on our dataset. They obtained the best re-
sults using RF (F-score: 0.60 for laughter class, F-score: 0.76 for
nonlaughter class), and SVR (F-score: 0.63 for laughter, 0.61
for nonlaughter), while our best F-scores were: 0.66 (laughter),
0.77 (nonlaughter) using RF, and 0.65 (laughter), 0.80 (non-
laughter) using k-NN. Their results were obtained on a dataset
including both sitting and standing participants, and the results
on standing participants only were lower than ours. In our study,
we only use the standing data (thus, potentially more difficult
case, as Griffin et al., showed in [8]).

IV. SYSTEM PROTOTYPE

We applied the results of our study to design and imple-
ment a system prototype using low-cost consumer hardware
and lightweight algorithms to detect laughter from body move-
ments. The architecture of our system prototype is depicted in
Fig. 6. We exploit a Kinect sensor,5 a laptop, two polystyrene

5http://www.xbox.com

markers (to simplify tracking of shoulder movement), and the
freely available EyesWeb XMI platform.

A. Setup

In Fig. 6(b), the user sits on a stool in front of a computer
screen with a Kinect device on top of it, wearing lightweight
green polystyrene markers on her shoulders. The user’s position
puts some constraints on her degree of movement (the user
has to remain seated and look at the screen), introducing some
limitations on the features we can extract in the prototype. For
example, legs are not visible, arms never move because of the
table, the user’s head, and trunk are always facing the camera.
However, head and trunk movements are measurable, as well as
the shoulders due to the green markers.

Tracked markers are highlighted in red on the user’s silhou-
ette in Fig. 6. The user’s silhouette, automatically extracted by
Kinect, is segmented in two regions based on the position of
the markers: head and trunk (H and T areas, respectively, in
Fig. 6). The Kinect SDK also provides as output the distance
of the user’s silhouette from the sensor: We consider head and
trunk distance in a separate way; we define D as the difference
between head and trunk distances (i.e., it approximates trunk
leaning).

B. Feature Vector

With respect to the 13 features F1–F13 described in Section
III-B1, our real-time system uses nine features K1–K9 computed
in real-time with EyesWeb XMI. The first two (K1 and K2) are
the same as before (F1 and F2): they measure the head’s hori-
zontal and vertical displacement of the head’s 2-D barycenter.
Three features (K3, K4, and K5) measure torso movements: 1)
periodicity of trunk (K3) approximates abdomen shaking (F5)
and trunk rocking (F7) by checking whether distance D (head
versus trunk distance) varies in a periodic way; 2) maximum am-
plitude of distance D (K4) measures trunk straightening (F6);
and 3) trunk impulsiveness (K5), computed as the ratio between
peaks height and duration of D, corresponds to trunk throwing
(F8). Considering the limitations and constraints on the user’s
degree of movement, we implemented an analysis of the user’s
shoulders to overcome the missing information about the user’s
legs and arms. Left and right shoulder periodicity (K8 and K9),
computed by checking whether shoulder vertical position varies
in a periodic way, correspond to shoulder shaking (F13). Two
new features were introduced, inspired by Mancini et al., [7]:
shoulder energy (K7) and correlation (K8). These two features
benefit from the prototype setup: With the user sitting in front of
a camera, it is easier to compute them. Features regarding legs
(F3 and F4) and arms (F9 to F12) cannot be computed with this
prototype setup.

C. Automated Classification and Discussion

A dataset consisting of 367 laughter and nonlaughter seg-
ments from five participants was created. Participants were
asked to perform two different tasks from those presented in
Section III-A: an individual one, that is, watching video clips
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alone; and a social one, that is, playing the “Yes/no” game via
Skype. At the beginning, the participant was invited to play the
“Yes/no” game via Skype with one of the experimenters. Then,
the participant was asked to choose and watch from internet a
comedy clip she liked (e.g., tv shows, clips from movies), lasting
about 4–6 min, and then a comedy clip that the experimenters
previously selected. Finally, the participant had to play for a
second time the “Yes/no” game.

Two classifiers were trained and run on the dataset: SVM
and Kohonen’s self-organizing map (SOM). The first one is
described previously, the second one exhibits two main differ-
ences: 1) it executes quickly; and 2) the configuration of the map
can be updated in real time: that is, it can adapt to the movement
features values that characterize a user. We did not yet exploit
the latter capability in our prototype, but previous work showed
that this approach can be used to create reflexive interfaces
[35]. SVM had a performance (F-score) of 0.73 (Precision 0.75,
Recall 0.73). For the SOM, the F-score was 0.68 (Precision 0.65,
Recall 0.73) and Accuracy 0.69.

The classification results are comparable with the results ob-
tained in our study presented in Section III. However, in this
setup, we use less precise data (Kinect and video instead of Mo-
Cap), and the setup has some constraints: participants are sitting,
and their movements are limited. In such a setup, the laughter
detection from full-body movement might be easier, as Griffin
et al. showed in [8]. Thus, while the first aspect could influence
negatively the detection, the second might counterbalance the
lower performance of the input sensors.

V. CONCLUSION

In this paper, we have presented techniques to detect laughter
solely from body movements. For this purpose, we developed
laughter detection algorithms based on 13 full-body movement
features extracted from motion captured data and grounded in
an LBM annotation schema [20]. The algorithms were applied
to a dataset of 801 manually segmented laughter and nonlaugh-
ter episodes with a total duration of 73 min. These episodes
consisted of spontaneous full-body behaviors collected during
social multiperson activities (e.g., social games). In this con-
text, the use of other modalities to detect laughter is challenging
since different participants’ utterances (i.e., speech and laughter)
overlap each other continuously and participants are very mo-
bile, making face tracking difficult. The dataset is available for
research purposes. The obtained classification results improve
the current state of the art: discriminative classifiers (SVM,
RF, k-NN) outperformed probabilistic classifiers (NB, LR) and
slightly higher classification results were obtained in compar-
ison to the results of previous work. Moreover, in our work,
on laughter detection, we compare automated detection with
the human ability to recognize laughter from body movements
on the same dataset. We found that the overall performance of
our algorithms was similar to the performance of the human
observers but automatic classification algorithms obtained bet-
ter scores for laughter detection (although they were worse for
nonlaughter detection). Thus, machines can surpass humans in
laughter detection from full-body movement in situations in-

volving sensory deprivation (e.g., when no audio modality is
available). A prototype system for automating the detection of
laughter using low-cost motion tracking was introduced and
evaluated.

To create laughter-sensitive interfaces, several open research
questions remain unanswered. The automatic real-time laughter
segmentation of continuous body movement is still an open chal-
lenge. Fusion algorithms must take into account the entire palette
of human interaction modalities: Initial work in this direction
proposed by Petridis et al. [13] does not yet consider body
movement. Classification of different laughter types also has to
be addressed. Initial work on this topic was carried out by Griffin
et al. [36], who tried to distinguish between “hilarious” and “so-
cial” laughter. Future research should also address the detection
of different communicative intentions of laughter, to commu-
nicate irony for example, from body movement. The analysis
of full-body movement can be particularly useful for detecting
behavior regulation, that is, when one tries to inhibit laughter.
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